Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.01.21265775

ABSTRACT

Aerosols and droplets generated from expiratory events play a critical role in the transmission of infectious respiratory viruses. Increasingly robust evidence has suggested the crucial role of fine aerosols in airborne transmission of respiratory diseases, which is now widely regarded as an important transmission path of COVID-19. In this report, we used CFD modelling to investigate the efficiency of using portable air purifiers containing HEPA filters to reduce airborne aerosols in hospitals and serve as a potential retrofit mitigation strategy. We used a consulting room to set up our simulations because currently the clearance time between consultations is the controlling factor that limits the patient turnover rate. The results suggest the inlet/suction of the air purifier unit should be lifted above the floor to achieve better clearance efficiency, with up to 40% improvement possible. If multiple air purifiers are used, the combined efficiency can increase to 62%. This work provides practical guidance on a mitigation strategy that can be easily implemented in an expedient, cost-effective and rapid manner, and paves the way for developing more science-informed strategies to mitigate the airborne transmission of respiratory infections in hospitals.


Subject(s)
COVID-19 , Respiratory Tract Infections , Respiratory Tract Diseases
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.09.21260247

ABSTRACT

Background COVID-19 has restricted singing in communal worship. We sought to understand variations in droplet transmission and the impact of wearing face masks. Methods Using rapid laser planar imaging, we measured droplets while participants exhaled, said ‘hello’ or ‘snake’, sang a note or ‘Happy Birthday’, with and without surgical face masks. We measured mean velocity magnitude (MVM), time averaged droplet number (TADN) and maximum droplet number (MDN). Multilevel regression models were used. Results In 20 participants, sound intensity was 71 Decibels (dB) for speaking and 85 dB for singing (p<0.001). MVM was similar for all tasks with no clear hierarchy between vocal tasks or people and >85% reduction wearing face masks. Droplet transmission varied widely, particularly for singing. Masks decreased TADN by 99% (p<0.001) and MDN by 98% (p<0.001) for singing and 86-97% for other tasks. Masks reduced variance by up to 48%. When wearing a mask, neither singing task transmitted more droplets than exhaling. Conclusions Wide variation exists for droplet production. This significantly reduced when wearing face masks. Singing during religious worship wearing a face mask appears as safe as exhaling or talking. This has implications for UK public health guidance during the COVID-19 pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL